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3    Introduction To Lock Theory                      
*1 

 

 The following is a pre-print of Chpt. 3 of the book: Return To P.G. Tait via Analytic Theory 
 Of Knots. I introduce the curious problem of 'Borromeaness', or Locking as it was first 
 coinded by P.G. Tait, then show the difficulties it causes in the calculation of the linking 
 number. The questions are raised: What is the difference between a link and non-link? 
 Are locks and trivial links the only types of non-links?  What is the movement that 
 establishes a link as invariant? Classify this movement into three types (the Reidemeister 
 Moves) and develop a calculation of both these movements and what poses an obstacle 
 to these movements (an invariant). The text has as its goal to transmit to those working in 
 the field of analysis the necessary material to construct the topological problems posed 
 by the late J. Lacan without reducing such constructs to the repetition of commentary. 
 This is a pre-print article for the internet. 

 

       By  Robert Grome 

   

 

  0- An informal introduction to Links and Non-Links 

Though we assume no mathematical background here, a previous lecture of 
Chapters §1 and §2 will facilitate a reading of the psychoanalytic implications. 

 

1- Crossings In Immersed Graphs and Embedded Knots 

First, we will place ourselves within the framework of a classical formal theory as 
explained in Section §1.  Within this framework we will suppose that we are 
working with the projection of an object in three-dimensional space on a two-
dimensional surface.  As explained in the last section, a knot projection results in 
an immersed graph having crossings points at the meeting of two strands of the 
projected 3-d embedded knot or link: 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

1	  -‐Coat of arms showing Borromean interlocking	  
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Embedded Knot in 3-d 

 

 

 

Immersed Graph in 2d 

 

 

 

 

As demonstrated, within the classical framework, for every n crossing points in 
the plane, there are 2n possible over and under diagrams in space:   

 

 

 

 

 –1                                    +1 

For example, given an immersed graph of two intersecting closed curves at n 
points, there are 22 = 4 different spatial embeddings: 

 

 

 

 

 

In this section, we will only be interested in multiple component locks and links, 
leaving until a later the problem of single component knots.  
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2- Linking, Locking, Trivial Link, or Something Else? 

It is important to recognize that the choice of 2n overs and unders on an 
immersed graph determines whether the diagram is linked, locked, or trivial, i.e., 
an unconnected collections of closed curves. Schematically, this choice of overs 
and unders results in a type of diagram that can be presented in a decision tree: 

 

  Planar immersion 

      

      

 

 Link   Space Diagrams           Non-link 

 

 

      Trivial Link   Lock 

 

 

 

Informally, let us fix our vocabulary with the following definitions: 

1) (X,Y) is a trivial link if and only if the closed curve X does not borrow the hole 
of the other closed curve Y and the two closed curves are separable, i.e., it is 
possible to completely disconnect one component from the other by sliding in the 
plane (isotopy) 

2) (X,Y) is a link if and only if the closed curve X does borrow the hole of the 
other closed curve Y and the two closed curves are not separable, i.e., it is 
impossible to completely disconnect one component from the other by sliding in 
the plane (isotopy). 

3) (X,Y) is a lock if and only if the closed curve X does not borrow the hole of the 
other closed curve Y and the two closed curves are not separable (see (2) 
above). 
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The reader is left as an exercise the generalization of these definitions into more 
than two components. 

The obvious question is whether these three types of connection between closed 
curves are exhaustive and the degree of combination and complexity that there 
may be between them. In any case, given one planar immersion we have to 
determine whether the resulting embedding diagram is either a link, lock, trivial 
link or something else. The rest of this section aims to introduce different 
manners of doing so. 

 

3- First Characters of Link Theory: The Reidemeister Moves And Isotopy 

In order to respond precisely to the question of whether a diagram is a link, lock, 
trivial link, we will need a method of writing or calculation to aid us in our 
decision. In order to introduce this method, I will briefly return to one of the oldest 
invariants in topology, the Linking Number, first discovered by Gauss in        [    ]. 
This will allow us also to introduce a systematic way of accounting for a link by 
the manner it moves in space via diagrammatic Reidemeister moves. As we will 
show, the weakness of the linking number and the Reidemeister moves is that 
they do not detect a second modality of connection between closed curves first 
called by Tait 'locking' [     ]. 

Given a collection of immersed closed curves in the plane, determine a choice of 
overs and unders: 

 

 

 

 

 

 

 

 

Then determine if the diagram denotes a link or non-link. If it is a non-link, 
determine if it is a tangle, a lock, or something else.  For example, the diagram 
d.x above denotes a tangle because none of the closed curves encounter an 
obstacle in sliding it across the plane, i.e., all of its components are separable.  
As result of sliding the closed curves, they can be shown to be disconnected: 
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⇔ 

 

If the sliding does encounter an obstacle, that is to say, if there is an arc of 
another closed curve that snags and prevents it from sliding apart, then it is not 
separable and is either a link or a lock.  

For example, the diagram below shows the two closed curves as being 
connected in the sense that one curve goes inside the other in such a way that 
the two closed curves snag, .i.e, can not come apart without breaking the other. 

 

 

 

 

In order to tighten up our definitions, let us give a name to sliding in the plane: 
isotopy. Then let us agree to call an obstacle to an isotopy an invariant, or more 
precisely, an invariant of isotopy.  If we assume the arcs are connected to form 
two closed curves in the above diagram, then such a snag to an isotopy, would 
be called a link, i.e., a link is an invariant of isotopy. 

 

Let us also fix our vocabulary here by noting that there are three characters – or 
configurations of traits – that exhaust the possible types of isotopies of string 
diagrams2. These characters of movement are called the Reidemeister Moves: 

 

    

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

2	  We have noted elsewhere in Section §x that these three moves do, however, take for granted 
the seemingly trivial rotation of a configuration in the plane.	  
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   R.1 

 

   R.2 

 

 

   R.3 

 

 

Without becoming too precise at this point of our presentation, it suffices to say 
here that if there is an obstacle to an isotopy, then there is an obstacle to a 
Reidemeister move R1,R2, or R3. For example, in the diagram below, three 
Reidemeister moves are possible, before arriving an obstacle that no 
Reidemeister can undo. Said otherwise, the Reidemeister moves remove all the 
tangling shown in the diagram: 

 

 

 

 

    

    R2    R1 

If X is a curve in the plane, then a series of Reidemeister Rx, Ry, … Rn moves 
performed on X may be written as: Rn(Ry(Rx(X)). If after a finite number of moves 
Rn-1, the object of the diagram is still obstructed, then we can write an equation 
that Rn-1(Ry(Rx(X)) ≥ 1, if not 0, where '1' denotes an obstacle and '0' does not. 

Though this finite list of movements is quite a progress in cataloging obstacles to 
isotopy, it does not allow us to determine whether, given configuration of closed 
curves, whether the 0-case of non-linking denotes a lock or a trivial link. That is to 
say, the Reidemeister moves by themselves may give us a positive manner to 
determine linking, but they do not allow for us to determine non-linking.  

For example, in an exceedingly complicated diagram, just because we have not 
arrived to slide things apart according to the Reidemeister moves, does not mean 
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	   we cannot do so; we may have just not arrived at the correct combination. 
Thus, what is required to overcome this barrier is a method of writing that will 
allow us to establish which crossings n of a multiple of closed curves (X,Y, …Zn) 
are nugatory without needing to actually slide things around.  Such a method of 
writing is at hand and is called the Linking Number L(k) where: 

 L(k) = ∑ ( A1+ A2 + … An)/2.  

Which is nothing other than to say that the Linking Number is the sum of the 
crossings A1, A2, … An of the diagram divided by two. The simplest case of 
linking occurs in the case where two closed curves share the hole of the other 
one time.  In order to calculate L(k), we must first orient the closed curves as 
follows: 

                                                                     +1 

            

 

 

      +1 

Once this orientation is introduced, the Linking Number may be calculated 
according to the formula: L(k) = ∑ ( A1+ A2 + … An )/2. Thus, in accounting for 
the crossings in the diagrams below we write: (+1 + (+1))/2 = +1. Which means 
the diagram of the object is linked one time in the positive sense of the arrows. 

The Linking Number allows us to construct an equation– or decision procedure – 
by labeling the diagram in such a way that it allows both the calculation of how 
many times closed curves are linked and a decision as to whether the diagram of 
an object is actually linked. Said otherwise, if the Linking Number L(k) ≥ 1, then 
object is linked one or more times, if the Linking Number L(k) = 0, then the object 
is non-linked.  But this is again the sticking point: if the object is non-linked, then 
it is either a trivial link – a collection of disconnected closed curves – or it is a 
lock. Leaving until later and examination of whether it may be something else 
than these three types of connection, I want to focus here on the weakness of the 
Linking Number: it can only detect obstacles that create linking and not those that 
create locking as it confuses the latter with the Unlink or Trivial link.   
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3- Classifying Links Via The Linking Number 

 

It is important to recognize that the linking number L(X) does not recognize self-
linking on one strand: that is to say, when you label the configuration do not label 
those crossings of a strand that crosses itself like the one on the left, only those 
crossings formed at the intersection of separate components: 

 

 

 

 

 

L(k) = ∑( 1+1)/2 = 1    L(k) = ∑(1+1+1+1)/2 = 2 

It is also important to recognize how the Linking Number computes non-linking as 
zeros. For example, two of the diagrams below have an L(k) = 0 and one an L(K) 
= –2 : 
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	   But only the lower configuration of closed curves is separable into a trivial 
link. The other has a mode of connection undetected by the Linking Number 
called Locking; here the archi-typical case of the Borromean. 

Before going further, we leave to the reader to get a better grip on what is at 
hand by constructing the exercises. 

 

1) Show that the Reidemeister moves are invariants of isotopy, i.e., that the 
addition of crossings in a collection of Reidemeister moves are always equal to 
zero no matter how you slide the arcs.  For instance, although it is easy to show 
that Reidemeister II is equal to zero: 

 

 

 

 

 

 

it is less easy to show how Reidemeister I and III are equal to zero.  Explain your 
response. 

2) Undo, if you can, any of the 3-component configurations depicted in fig. X. Just 
because you cannot undo them does not mean they can not be undone. Use the 
an argument with the Reidemeister moves to give a combinatorial proof that any 
configuration with a linking number L(K) ≥ 1 is really linked. Devise an argument 
to show that if, however, L(K) = 0, this does not mean it is a trivial link. 

 

3) Label the crossings of the following configurations and compute the linking 
number L(X). Are they linked, locked, or trivial? 
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4) Lacan labeled the Borromean with R.S.I. (Real, Symbolic, Imaginary) which 
caused several bouts of delirium in France and the journalistic writings on Lacan 
to explain everything from the Three Muskateers to the Trinity; while it seems in 
the U.S.A. the only ones to have taken notice was a beer manufacturer: 

 

 

 

 

 

 

 

 

 

 

R. Grome 
Summer 2010  
Research at P.L.A.C.E. 
Psychoanalysis Los Angeles California 
1223 Wilshire Blvd. #1514 
Santa Monica, CA 90403 
Email: res1d6qq@verizon.net 
 

 

 

 

 

 

 

 

 



11	  

	    

 

 

 


